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When the working substance in the forechamber of a control motor on an orbiting space- 
craft is ignited, charged particles are produced together with neutral molecules and larger 
combustion product particles. Control motors usually operate in a pulsed mode. As the jet 
escapes into the highly rarefied atmosphere the gas passes through all motion regimes: 
from a continuous medium regime to one in which collision processes can be neglected [1-3]. 
In the collision-free regime, which is the one we will consider further, a force acts on the 
particles exiting the motor (in a more general case, upon particles emitted from the surface 
of the apparatus). For a particle with charge q in a magnetic field B this force will equal 
q[v• where v is the particle velocity relative to the field. This force can cause a re- 
turn of the particle to the spacecraft surface. Of special interest is the motion of heavy 
particles, which under real conditions have radii in the range ~i0-9-i0 -7 m and a density of 
approximately 2 g/cm a (so that their mass M proves to be much higher than the mass of mole- 
cules in the atmosphere m). A study of the dynamics of such particles is necessary to de- 
termine their role in erosion of vehicle parts, and also in formation of signals in equip- 
ment used to detect charged particles. Because of their large mass, these charged particles 
have a long rotation period in the magntio field, and can collide with the vehicle some time 
after switehoff of the engine. As will be shown below, aerodynamic resistance forces can 
have a significant effect on the motion of such particles. In the general case the charge 
of such particles apparently varies with time, for example, because of precipitation of 
particles with opposite charge from the ionosphere. In the analysis presented below, we 
will assume for simplicity, that the charge remains constant. The question of the char- 
acteristic neutralization time for particle charge will be evaluated at the end of the study. 
Moreover, in deriving the various relationshipsitwas assumed that the particle velocity in 
the jet u is usually small in comparison with the velocity of the vehicle vo. 

For further analysis we will introduce a coordinate system (Fig. I) with z-axis directed 
along the vector u x-axis directed vertically up from the planet surface, with the x-, y-, 
and z-axes forming a right-hand orthogonal coordinate system. For the origin of this system 
we choose that point of the vehicle trajectory at which its center of mass is located at the 
time of motor switchon, and we will assume that this origin is then fixed with respect to 
the magnetic field. We denote by ~ the angle between the vectors u and B, and by ~ the 
normal to the plane in which these vectors lie (so that ~, z, and B form a right-hand sys- 
tem), and by e the angle between the axes ~ and y. Let t~ be the time beginning at which 
the magnetic field B acts on the charged particle jet, with the particle at this time being 
located at the point (Xs, Ys, Zs) and having velocity components Ux, Uy, Uz relative to the 
vehicle. 

To consider the friction force F acting on the particle because of molecules of the 
surrounding medium, we will assume the particle to be a sphere of radius a. Then F 
--em~a2eu~v/v. Here n is the gas concentration, the coefficient ~ is close to unity [4] for 
a velocity ratio S ~ 6 (S = v~mm/2--~, where k is Boltzmann's constant and T~ is the gas 
temperature). 

The equations of motion of the particle in the magnetic field have their simplest form 
in the coordinate system ~, ~, z, the $ z-axis of which lies in the plane (V 0, B) and is 
orthogonal to the direction of V 0 [5]. In this coordinate system the modulus of the parti- 
cle velocity v is equal to 

( ~ , ~ , . 2 ) ~ / ~ .  
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Fig. i 

Under orbital flight conditions the velocity component v z is close to Vo, while the com- 
ponents vs and v n are of the order of magnitude of the reactive jet velocity. Therefore 

a ~ ,  . . a  : a + v~, and consequently, v v z --vo >> v~ -~- Vo. Then the components of the friction force 
along the ~, N, z axes can be represented in the form 

f ~ = -- ~ m n n a  2 For b (1)  

F~ = - - a m n n a  2 Vovn, 

F z = - -~mn~a2Vovz .  

The equations of motion of a particle of mass M under the influence of the magnetic 
field and aerodynamic resistance forces under the conditions of interest here can be written 
in the following manner (here and below, a dot above a letter denotes differentiation with 
respect to time): 

Mv~ = qvnB cos ~ + f t ;  (2 )  

M ~  n ~ quzB s in  ~ - -  qv~B cos ~ + F~I; (3)  

.ff'IVz ~ - -qv~B s in  ~ + Fz. (4 )  

Differentiating Eq. (3) with respect to time and its subsequent transformation with 
consideration of Eqs. (2)-(4) leads to an equation describing damping oscillations 

~ + 2s~,~ + og~ = o, (5) 

where 

6 = a(m/M)n~a~Vo;  (6)  

~ = ~ 2 + 6 2  ' (7 )  

where ~ = qB/M is the cyclical rotation frequency of the particle in the magnetic field. In 
the special case considered Eq. (5) does not have an aperiodic solution which corresponds to 
the condition ~a ~ ~ [6, 7], i.e., ~2 ~ 0, which contradicts the requirement of a real, 

nonzero value of ~ if B =/= 0. 

The solution of Eq. (5) has the form 

V n : - - V •  s in  ~ ' ( t - - t o )  , (8)  

where u~1 is the projection of the particle velocity on the plane perpendicular to B, at 
time t~ (in contrast to the case where the resistance force is equal to zero, the quantity 

v• is a function of time); ~'=~--62; to is the time at which v~ = 0. Considering 
Eq. (7), we find that in the case considered ~' = m. 

Substitution of Eq. (8) in Eqs. (2), (3) and solution of the latter with consideration 
of initial conditions gives 

V~ = V~I ~ - V ~ I T  COS ~; (9)  

Vz = Vo + U z - - V ! l  W s in  ~. ( 10 )  

Here 

(ii) 
q~ = e-6(t- tO cos o~ (t - -  to) - -  cos o~ (t~ - -  to). 
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Expressions for the velocity components Vx, Vy in the coordinate system xyz can be 

obtained from the relationships 

v~ = v x e o s  e - - v y s i n  e, v n - -  v x s i n  e ~ vy cos  e, (12) 

which follow from the geometric constructions shown in Fig. i. In particular, at time t~ 

we have 

v~l = u~ cos e -- u y s i n  e. (13) 

E q u a t i n g  t h e  r i g h t h a n d  s i d e s  o f  E q s .  ( 1 2 ) ,  ( 8 ) ,  ( 9 )  a n d  s o l v i n g  t h e  s y s t e m  o f  e q u a t i o n s  o b -  

t a i n e d  simultaneously, we find 

vx = u~ c o s 2 e  - -  uu(s in  2e) /2  @ V• COS e COS ~ - -Vi l [~  @ s in  (0(t - -  t l ) ] s i n  e; ( 1 4 )  

vy = - - u ~ ( s i n  2e) /2  + u y s i n 2 e  - -  t, a l T  s in  s cos ~ - - v : l [ ~  + s in  ( 0 ( t - - t l ) ] c o s  e. ( 1 5 )  

Here 

O0 = e - 6 ( t - t l )  s in  c0 ( t - - t o )  - -  s in  (0 (t - -  t O. ( 1 6 )  

As follows from Fig. 1 (see also, [5]) the projection of the particle velocity val is 

defined by 
2 ,2 o 

v_Ll ---- vl  q- v61 - -  [(Vo q- Uz) s i n  ~ @ v~l cos~]  2 -{- u~l. (17) 

Given the condition that at time t~ the particle is located at a point with coordinates Xs, 
Ys, Zs relative to the vehicle, integration of Eqs. (i0), (14), (15) gives the following ex- 
pressions for the current coordinates (t- t: = T): 

[u x cos ~ e - -  uv ( s in  2e) /2  - -  v •  cos e cos ~ • ( 1 8 )  

• cos (o(6 -- to)],c + [v~1/(52 4 -  (02)1((0 cos e cos ~ + 5 s i n  e)cD + 

~- [v j_ j (5  2 + (0 2 )1((0 s i n  s - -  5 cos  e cas  ~ ) T  = x - -  x~; 

[uy s in  s e - -  ux ( s in  2e)/2 ~ v i i  s in  e cos ~ • ( 1 9 )  

X COS (0(t I - -  to)]'c @ [ U l l / ( ~  2 @ (02)](~ COS g - -  (0 s in  e cos ~)(D q- 

-t- [v• -+- (08)]((0 cos e @ 6 s in  e cos 13)T - -  y - -  Ys; 

r ' s i n ~  5 (20) [u~ q- v a l  s in  13 cos (0 ( q  - -  to) ] "~ - - v  j_l s i n  [~ 52 q-  (~ 2 09 -~  v •  5" q-  oa ~" W = z - -  V o t  - -  z s = z o - -  z~. 

The expressions obtained can be considered as a system of equations, simultaneous solution 
of which will permit establishment of the relationship between the time interval T, the 
starting coordinates x s, Ys, Zs, and the finish coordinates x, y, zo, as well as the ini- 
tial particle velocity components u x, Uy, u z. For such a solution we take m, r P as new 
independent variables. Then the desired relationship has the form 

b x  (x - -  xs) cos e - -  (g --  gs) sin e q- (a o - -  zs) ctg 
"c -D - -  u c o s e - - u u s i n e q - u  ctgf3 ' ( 2 1 )  

where D and D~ are the determinants of the homogeneous and inhomogeneous systems (18)-(20). 
It is of interest that Eq. (21) does not explicitly contain the parameters defining the 
aerodynamic resistance forces, and coincides with the analogous expression for the case F = 
0. However the initial components Ux, Uy, u z of the velocity which the particle must 
possess in order to fall upon the vehicle during the time in question do depend on these 
parameters. 

In Eqs. (i0), (ii), (14)-(16) the unknown time to appears as a parameter. This quan- 
tity can be eliminated from these equations if we consider that t -- to = ,c + t~ -- to. More- 
over, comparison of Eqs. (8) and (12) for t = t: gives 

s i n  (0 (t o - -  t l)  = Unl/1).l_l = (~_/12.1_l)(U x s in  e + u, a cos ~). 

Hence, with consideration of Eq. (17) we have 

cos co(t o - -  t~) = - - ( t / v a l ) [ ( V  o 4 -  u~) s in  ~ -~ v~l cos ~l .  

T h e  s i g n  h e r e  i s  c h o s e n  f r o m  p h y s i c a l  c o n s i d e r a t i o n s ,  s i n c e  t h e  p h a s e  m ( t o  - -  t : )  i s  c l o s e  
t O  ~I. 
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Substitution of these expressions in Eq. 
expression for the particle velocity components relative to the magnetic field (i, j = 

i, 2, 3 = x, y, z): 

3 3 3 

ci = ~ p~su~ + E q~u~e -~ ( t - q )  s i n  o~ (t - -  t~) + ~ ri~u~e -~ ( t -q )  cos  ~o (t - -  t O. 
3=1 j = l  ,~=1 

Here 

(i0), (ii), (14)-(16) leads to the following 

(22) 

u 1 = u~; u 2 = u~; u a = Uz + Vo; ( 2 3 )  

P u  = c~ 8( t  -~- cos  2 [~); P12 = - - ( s i n  2~ / 2 ) ( i  ~-  cos  2 ~); 

Px3 = cos  e s i n  2g /2 ;  q l l  = s i n  2 s  cos  [3; q ~  = cos  2e  cos  ~; 

q18 = s i n  e s i n  [3; r u = s i n  2 e - -  cos  2 e cos  2 ~; r l :  = ( s in  2e /2)  X 

X (1 q-  cos  2 [~); r~3 = - - c o s  s s i n  2f3/2; P~I = ( s in  2 e / 2 ) ( t  + cos  2 13); 

p ~  = s i n  2 e ( t  -~ cos  2 ~); p.,a = - - s i n  e sin21~/2; 

q ~  = cos  2e cos  ~; q ~  = - - s i n  2e cos  ~; q~a = cos  e s i n  [~; 

r21 = ( s in  2 e / 2 ) ( t  + cos  2 ~3); r ~  = cos  2 e - -  s i n  2 e cos  2 [3; 

r2a = s i n  s s i n  2~/2 ;  P3~ = - - c o s  8 s i n  2~/2 ;  p ~  = s i n  e s i n  2~3/2; 

Paa = co s :  [~; q a  = - - s i n  s s i n  ~; qa~ = - - c o s  e s i n  t~; qa, = O; 

r a  = cos  e s i n  2~/2 ;  ra2 = - - s i n  s s i n  2[~/2; ra~ = s i n  ~ I~. 

Integrating Eq. (22), we obtain an expression for the particle displacements along the 

coordinate axes over time x 

' (2  +2 /•  

j = l  (t) j = l  / j = l  / J 

where xl = x; xa = y; xa = z. 

An important quantity when operation of measurement equipment sensitive to charged 
particles is concerned is the particle energy E z, related to motion relative to the vehicle 
along the flight path. The quantity Ez can be considered as a parameter in the equation 

Vz - -  Vo = - -  ] /  2 E z / M ,  (25) 

solution of which will give the mass and initial velocity components required of a particle 
in order that it enter a sensor located on the vehicle surface in a specified time interval 
after startup. The sign in Eq. (25) is chosen from the condition of particle incidence on 

the surface. 

In order to solve this problem, Eq. (24) is considered as a system of linear inhomo- 
geneous equations, in which uj are independent variables and xi -- Xsi are free terms. The 
system was solved using Cramer's rule. To simplify the expressions obtained it was con- 
sidered that in cases of practical interest it is true that Vo~ >> x i -- Xsi (i = i, 2, 3). 
The values of uj thus obtained were then substituted for v z in Eq. (22), and then in Eq. 
(25), making use of the relationship u X cos e -- Uy sin ~ = --u z cot 8, which follows from Eq. 
(21) for uir >> x i -- Xsi. After cumbersome calculations this procedure produces the follow- 
ing equation for the total rotation angle ~ of the particle trajectory (phase of the motion) 

in the magnetic field (~ ~ ~): 

V~ i + COS2~ I -- e -5~ sin 9 1 _ (l--e-6~c~ e6~cos2~ -- (26) 
9 ,  / 9 .  sul 

6~ 28,  ( l - - e  - , 6~cosT)  e ~ c o s  2 ~ -  9 .  e-~ s i n  ~ cos  2~ § 

9 ,  si~ ~----~ ( i  - -  e -6~ cos  ~)~ e 6~ cos  2~ = - - s i n 2 ~  t - -  e -6r,  sing, ~ - -  
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(i --q~,e-~sinC~ q~)~ e6 ~ sin6*q) (1 - -  e - ~  cos q~)2 e ~  i + ~ _~ 

+ si~i"q) (1 e - ~  cos q~) e ~v - -  6, I -~ e - ~  sin q) 

where 

6, = 6/~ = 6~/~, ~. = ~(I + 62T2/~2) (27) 

(26) is a function of % In fact, if we consider Eq. (26), the fact The quantity ~T in Eq. 
that a = (3/4~p):/3M I/~, where O is the density of the particle material, and 

= ~ = q B ~ / M ,  (28)  

t h e n  

5~ = a m n V o ( 3 T / 4 9 ) 2 / 3 ( n ~ / q B / / 3  = 6 '~  1/3. (29)  

E q u a t i o n  (26)  was s o l v e d  n u m e r i c a l l y .  To c l a r i f y  t h e  u n i q u e  f e a t u r e s  o f  t h i s  s o l u t i o n ,  we 
write Eq. (26) in the form 

r = F ( ~ ) / ( % ( ~ ) V ~  = --b/sin2 8, 

where F(~) and X(~) are the expressions in brackets on the right and left sides of Eq. (26) 

respectively; b=V2Ej(qTBV~). Thus, the solution of Eq. (26) is the point of intersec- 
tion of the curve Y(~) and the straight line b/sin2~ = const. Estimates performed for the 
condition of incidence of jet particles on the vehicle surface under the action of the force 
q[v • B]~ show that at u << Vo the phase ~ proves to be significantly less than ~. Figure 2 
shows the function [Y(~)I for various values of the braking parameter ~' for a sample case in 
which ~ = 72.5 ~ , c = 141 ~ (curves 1-7 correspond to ~' = 0, 0.i, 0.2, 0.3, 0.4, 0.5, 0.6). 
An important feature of this characteristic family is that the curves have a minimum at which 
Ym ~= 0 if ~' v ~ 0, so that the particles fall upon the surface with an energy Ez which ex- 
ceeds some minimum value. This result is produced by the action of aerodynamic resistance 
forces. Another peculiarity of the curves is that at ~' =/= 0 Eq. (26) has two roots. This 
follows directly from the original equation for the equation for the energy Ez = (M/2)(Vz -- 
Vo) ~, according to which the defined value of the quantity Ez > Em can be realized either 
because of high particle mass or low particle velocity. As is evident from Eq. (28), for 
the first case high phase is characteristic of the particle motion in the magnetic field, 
while in the second case low phase is characteristic. 

For various values of the parameter 5' Fig. 3a shows the dependence of the dimension- 
less particle mass (M' =~I(qTB) -~ = ~-~) on the parameter b, a result of solution of Eq. (26). 
In Figs. 3a, b and 4 curves 1-4 correspond to ~' = 0.04, 0.16, 0.28, and 0.42. The angles 

and E are the same as in Fig. 2. The parmaeter range chosen corresponds to the neutral 
atom and molecule concentrations at heights of 200-300 km in the terrestrial atmosphere; for 
the heavy charged particles exiting the engine a range of Ez/q (which appears in the expres- 
sion for b) of approximately 1-200 J/C was considered. Here and below the letter f denotes 
that branch of the curves corresponding to phase values ~>%nm in Fig. 2. In practice the 
upper limit of the particle velocity is the reactive jet velocity. In Figs. 3 and 4 this 
limit is shown by the dashed line I for the case where Uma x = 0.25 Vo. Values of the de- 
pendent variables on the f branch corresponding to b values higher than those on the limit- 
ing curve (for example, lower mass values in Fig. 3a) cannot be realized. With change in 
the quantity Umax/Vo over the range 0.2-0.35 the position of this curve changes insignifi- 
cantly. In some cases another limitation arises from the requirement that the signs of the 
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initial velocity components and the particle coordinates coincide, this following from the 
gas dynamic conditions of particle escape in the jet. For example, calculations performed 
for 6' = 0 lead to a contradiction of these conditions. From the solution of the equations 
at 6' = 0 it follows that the particles must begin their motion in the semispace z s > zo, 
having velocity components Uz < 0, which does not agree with the gas dynamic conditions. 
For the case 6' 5 ~ 0 this contradiction can also occur for high phase values ~ (in Fig. 3a, 
the corresponding limitation is shown by the dashed line II). 

Recalculation of the quantity M' to a real scale shows that T ~--0.2-i sec and Z ~ i 
(Z = q/e, where e is the charge of the electron) and the particle mass M lies in the range 
of i0-2~ -16 g. 

The results of calculating total particle energy in a reference frame fixed to the 
vehicle at the moment of contact between particle and vehicle are shown in Fig. 3b. Calcu- 
lations were performed with Eqs. (22), (23), with E' = E(q~BV~) -~. These calculations show 
that for the conditions considered above the energy E lies in the range from units to hun- 
dreds of eV depending on the values of the parameters 8' and b. Figure 4 shows the func- 
tions ~(b) and 0(b) for angles formed by the particle velocity vector at q > 0 and the x and 
y axes of the vehicle at the finish moment. These angles are defined by 

= arc tg  [uy/(uz-- Vo) ], 0 = arc tgIv~/(v~ - -  Vo) 1, 

with v z -- Vo < 0. 

An increase in the charge Z which can be carried by the particle with other conditions 
remaining constant leads to a displacement of the solutions on the branch corresponding to 
low values of 6' and b. Inasmuch as the parameter 6' depends on Z more weakly than b, 
growth in Z with Ez = const leads to a b value in the range where there is no solution. It 
follows from this that with increase in Z the minimum value of E z must also increase. In 
addition, calculations show that the total particle energy relative to the vehicle, E, also 
increases. The required particle mass M also increases. 

In addition to calculations of the particle parameters shown in Figs. 3 and 4, using 
the same conditions calculations were made of the difference in particle start and finish 
coordinates, as well as the quantities u, Ux, Uy, u z. These calculations show that for the 
mutual orientation of the vectors B and V0, shown in Fig. l, those positively charged 

756 



particles land on the vehicle surface for which y -- Ys < 0, z -- Zs < 0; the difference 
x-- Xs may be either positive or negative depending on the value of the phase ~(i.e., the 
particle mass). It follows from calculations of the initial velocity projections Ux, Uy, 
u z that for such particles u z > 0, aside from the cases which were considered above, and 
also Uy > 0; the quantity u x may have either sign, depending on the phase ~. It should be 
noted that solutions for both small and large ~ values have a limitation. The parameter 
values at which this limitation may appear are, for example, minimum distance between parti- 
cle start position in the jet and finish position on the vehicle surface, defined by the 
position of the jet boundary, as well as minimum value of the particle initial velocity. 
Concrete values of these parameters depend to a high degree on the conditions of jet and 
charged particle formation, and also the coordinates of the point on the vehicle surface 
which is considered as the finish point. 

We will now consider the question of neutralization of the charge on such particles 
if they are in motion in the ionosphere, i.e., a rarefied plasma. Since the particle size is 
small (~i0 -8 m) in comparison to the Debye electric field screening radius in the ionosphere 
(~I0 -2 m) [5], these particles can be considered as Coulomb centers with current charge Z, 
which is neutralized by capture of particles with opposite sign. Using the expression for 
particle flux attracted to a Coulomb center (see, for example, [5]), for Z(t) we find 

Z + (e~N6Sp/Ea)Z  + N a S  p = O. (30) 

Here N b is the flux density of attracted particles; E is the attracted particle energy at 
infinity; Sp is the characteristic collection area. When the attracted particles are elec- 
trons, N b = (~4)<Ve>, E = kTe, Sp ~ &~a ~, while n is the electron concentration, <re> is their 
mean velocity, and T e is their temperature (it is considered that <v~> is much greater than 
the velocity of the Coulomb center). If the original particle is charged negatively, then 
the attracted particles are ions. The thermal velocity of ions in the ionosphere is low in 
comparison to the Coulomb center velocity, so that in a coordinate system bound to the 
ionosphere the center has a velocity of the order of magnitude of Vo (for Vo >> u). There- 
fore for ions N b --~ nVo, E ~ MiV~/2, Sp = ~a a (where M i is the ion mass). 

The solution of Eq. (30) has the form 

Z = Z o e x p  La - - - - ~ -  I - -  e x p  Ea t . 

Thus change in charge occurs with a time constant T n = Ea/(eaNbSp). Estimates show that for 
an electron concentra=ion of ~i0 ~ cm -3 and electron temperature of ~2000~ the value of ~n 
is about 3 sec, if the Coulomb center has a radius of ~5'I0 -9 m. Thus, for sufficiently low 
electron concentrations, when the condition ~ << T n is satisfied, the charge of a positively 
charged heavy particle can be considered approximately constant. For a negatively charged 
particle of the same radius this assumption is valid at a concentration of ~i06 cm -~. In 
fact, since MiV~/2 --~ 8 eV, at n ~ i06 cm -3 and Vo --~ 8 km/sec we have r n _~ 40 sec, i.e., 
the condition z << T n is satisfied. 

The author thanks B. M. Sukhov, Yu. E. Kuznetsov, and A. L. Stasenko for their dis- 
cussions, which made possible formulation of the problem considered. 
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